A numerical investigation of transient detonation in granulated material
نویسندگان
چکیده
A two-phase model based upon principles of continuum mixture theory is numerically solved to predict the evolution of detonation in a granulated reactive material. Shock to detonation transition (SDT) is considered whereby combustion is initiated due to compression of the material by a moving piston. In particular, this study demonstrates the existence of a SDT event which gives rise to a steady two-phase Chapman-Jouguet (CJ) detonation structure consisting of a single lead shock in the gas and an unshocked solid; this structure has previously been independently predicted by a steady-state theory. The unsteady model equations, which constitute a non-strictly hyperbolic system, are numerically solved using a modem high-resolution method. The numerical method is based on Godunov's method, and utilizes an approximate solution for the two-phase Riemann problem. Comparisons are made between numerical predictions and known theoretical results for 1) an inert two-phase shock tube problem, 2) an inert compaction wave structure, and 3) a reactive two-phase detonation structure; in all cases, good agreement exists.
منابع مشابه
Numerical Study of Blast Initiation of Detonation Using a Two Step Chemical Kinetics Model
The effect of chemical reactions on the blast initiation of detonation in gaseous media has been investigated in this paper. Analytical method is based on the numerical solution of onedimensional reactive Euler equations. So far, analyses on the blast initiation of detonation have modeled the combustion process as a one-step chemical reaction, which follows the Arrhenius rate law. Previous stud...
متن کاملA Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders
In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...
متن کاملSimulation and experimental work on manufacturing torispherical heads in explosive hydro-forming process
This study presents a numerical investigation on the deformation of the circular blanket against a male die under impulsive loading to form a torispherical heads shape. A finite element model was developed and verified with experimental tests for the explosive forming of the torispherical heads made of AA5083 aluminum alloy in the framework of LS-DYNA crash simulator software. The nature of the...
متن کاملNumerical Simulation of Transient Detonation Structures in H2-O2 Mixtures in Smooth Pipe Bends
Accidental internal detonation waves are a common threat to the pipeline systems of petrochemical or nuclear fuel processing plants. In order to quantify the failure potential of piping structures, especially at bends, accurate detonation pressure histories are required [5]. Since detonations inhibit multi-dimensional wave structures with triple points of enhanced chemical reaction, one-dimensi...
متن کاملA Study of Detonation Propagation and Diffraction with Compliant Confinement
Previous computational studies of diffracting detonations with the ignition-and-growth (IG) model demonstrated that contrary to experimental observations, the computed solution did not exhibit dead zones. For a rigidly confined explosive it was found that while diffraction past a sharp corner did lead to a temporary separation of the lead shock from the reaction zone, the detonation re-establis...
متن کامل